
"1 7 fd"g 076 NOA (TRROEMiAN) COMILE YAILIDRTION SUWMY REPORT 1/1
HRRRIS CORPORATION MAR. . (U) INFORMRTION SYSTEMS AMO
TECHNOLOGY CENTER H-P AFB OH AMR YALI. 26 JUN "

UNCLRSSIFIED F/fl 12/5 ML

Ehhhmmhmhmu
mcu

11111 .25 11111_L.4 11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAt BuRlAUi n! STANDARDS 1963 A

UNCLASSIFIED Ti " P

SECURITY CLASSIFICATION OF THIS PAGE (WhenOataEntered) -FILE COP
R&AM INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORECOMPLETEUINFORM

1. REPORT NUMBER JZ. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 28 JUN 1986 to 28 JUN 1987
Harris Corporation, HARRIS Ada Compiler,
Version 1.0, Harris H700 and H60 6. PERFORMING ORG. REPORT NUMBER

7
.-AUTHR(s) 8. CONTRACT OR GRANT NUMBER(s), . . .,.;,,.(Wigt-atterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB, OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 28 JUN 1986
United States Department of Defense -. NUMBK UP FAftS
Washington, DC 20301-3081 36
14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

00
!!

15a. RE a.FICATIN/DOWNGRADING

O" ~ 16. DISTRIBUTION STATEMENT (of this Repor)

18. SUPPLEMENTARY NOTES

19. KEYWORdS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

17. DISTRIBU20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD '"u 1473 EDITION OF 1 NOv 65 IS OBSOLETE
U CANSN 00I-LE-0D4- UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Oata Entered)

.. . • -- 7

1. -SUPPLEMENTARYNOTES

Ada ® Compiler Validation Summary Report:

Compiler Name: HARRIS Ada Compiler, Version 1.0

Host Computers: Target Computers:
Harris H700 Harris H700

under under
VOS 5.1 VOS 5.1

and and

Harris H60 Harris H60
umder under

VOS 5.1 VOS 5.1

Testing Completed 28 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Vati tton Facility
Georgeanne Chitwood Accession For
ASD/SIOL NiTIS GRA&I
Wrigt-Patterson AFB OH 45133-6503 DTIC TAB

Unannounced -
Justificatio

-4a Validation Office Distribution/

Dr. John F. Kramer Availability-Codes
Institute for Defense Analyses Avail and/or

Alexandria VA Dist Special

Ada Jo ht Program Office
Virginia L. Castor

Director
Department of Defense
Washington DS

® Ada is a regstered trademark of the United
States Government -

(Ada Joint Program Office).

.1I

%+ %

AVF Control Number: AVF-VSR-43.1086

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Harris Corporation
HARRIS Ada Compiler, Version 1.0

Harris H700 and H60

Completion of On-Site Vali.dstion:
28 JUN 1986

Prepared By:

Ada Validation Facility
ASD/SIOL

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+

+ Place NTIS form here +

++ + +- 4* + +

I.

r - . l, * * d ~ . . ~ 4 ' a ~ * . .
a.** * * aa . .%A~ ' ~ * * a~a.. ~ a ~ a a

/

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the HARRIS Ada Compiler, Version 1.0,
using V 'T.ion 1.7 of the Ada* Compiler Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-';815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 24 JUN 1986 through 28 JUN 1986 at 'larris
Corporation, Ft. Lauderdale FL, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) pollkcies and
procedures., The HARRIS Ada Compiler, Version 1.0, is hosted on a Harris
H700 operating under VOS 5.1. It is also hosted on a Harris H60 operating
under VOS 5.1.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 815 1051 17 9 21 1981

Failed 0 0 0 0 0 0 0

Inapplicable 0 9 269 0 2 2 282

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

OAda is a registered trademark of the United States Government
(Ada Joint Program Office).

,,,r.,.,"~~~~~ N, .. ,% ,. v , ..4 4 / , ,, ,, ,., " , . *, ", , •

There hore 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. SHORT INTEGER, LONGINTEGER, SHORTFLOAT, and LONG-FLOAT are not

supported.

• Representation specifications for noncontiguous enumeration
representations are supported.

• Generic unit specifications and bodies can be compiled in separate
compilations.

. Pragma INLINE is not supported for procedures or functions.

. The package SYSTEM is used by package TEXTIO.

. Modes INFILE and OUT-FILE are supported for sequential I/O.

• Instantiation of the package SEQUENTIALIO with unconstrained
array types is supported.

* Instantiation of the package SEQUENTIAL _O with unconstrained
record types with discriminants is supported.

• RESET and DELETE are supported for sequential and direct I/O.

* Modes IN-FILE, INOUTFILE, and OUTFILE are supported for direct
I/0.

. Instantiation of package DIRECTIO with unconstrained array types
and unconstrained types with discriminants is supported.

• Dynamic creation and deletion of files are supported.

Only one internal file can be associated with the same external
file.

• Illegal file names can exist.

ACVC Version 1.7 was taken on-site via three magnetic tapes to Harris
Corporation, Ft. Lauderdale FL. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTEM.MAX DIGITS, were compiled on a Harris H700. Class A, C, D, and
E tests were executed on a Harris H700. A subset of the tests was
compiled, linked, and executed on the Harris H60 computer.

.op .A

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
The test results produced from the subset testing were identical to the
results generated by the compiler operating on the Harris H700.

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the HARRIS Ada Compiler,
Version 1.0. Excluded were 242 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2021 tests were processed, 40 tests were determined to be
inapplicable. The remaining 1981 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD- 1815A.

Il

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMM4ARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS. 1-3
1.4 DEFINITION OF TERMS. 1-3
1.5 ACVC TEST CLASSES. 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION. 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
*3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1

3.3 SUMKAMi OF TEST hiESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TrESTS. 3-2

*3.5 TNAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS....................3-3
3.7 ADDITIONAL TESTING INFORMATION. 3-4
3.7.1 Prevalidation. 3-4

*3.7.2 Test Method...................3-4
3.7.3 Test Site....................3-6

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

_] W vrwyf I.W Fit fU' I . -v r w vu W PYK 'I Y W IN31 N

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requiremeats of the Ada Standard. The entire Ada Standard must be
implemented, nad nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do axist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a

compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not confoim to the Ada Standard

i 1- 1

g1

INTRODUCTI ON

" To attempt to identify any unsuppori..r language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 24 JUN
1986 through 28 JUN 1986 at Harris Corporation, Ft. Lauderdale FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this repc.rt.

The organizations represented on the signature page of this report do not
.,-present or warrant ;-hat all statements set forth in this report arc

Si r;-ate and complete, or that the subject compiler as no nonconformances
to \NST./MIL-STD-1815A other than those presented. Copies of this report
are ,',ailAble to the public frca:

Ada Informativn Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASDISIOL
Wright-Patterson AFB OH 45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

...a % -... -, .. . -.-....-.- %-% .-.-.. .,... . . .-. -, -, . -... ..-.-. ,-.< -%

INTRODUCTION

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,

the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to

resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected rebalt.

Target The computer for which a compiler generates code.

1-3

~ ~ *. % .. * * - .*.'I

INTRODUCTI ON

Test A program that evaluates the conformance of' a compiler to a
language specification. In the context of this report, the

term is used to designate a single ACYC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Con'ormance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

G'lass A tests check that legal Ada programs can be successfully 2ompiled
a and executed. (Hc,evc~r, no checks are performed during execution to see if

- the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those :iready reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the

program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.

Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

1-4

KWUWU flWVSW WV , WV wW NW Nf U - Vs -t : '.rl r . ; flu nr9i Ir .L J. . .- - -. .. .z-.. . ,- .. .

INTRODUCTION

Each Class E test is self-,hecking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

-he operation of these units is checked by a set of executable tests.
!h.se tests produce messages that are examt'!ed to verify that the units are
,perating correctly. If these units are not operating correctly, then the
validation ts not attempted.

Some of the conventions followed in the ACYC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-5

,,v, . ,.,' .,' , >€",'," . "..-. -- - e: .. ,,, -~.,' , .. '," . ,' ., < ,. ' -,., , ',,',,

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configurations:

Compiler: HARRIS Ada Compiler, Version 1.0

rest Suite: Ada Compiler Validation Capability, Version 1.7

Host Computers:

Machine: Harris H700 Harris H60

Operating System: VOS 5.1 VOS 5.1

Memory Size: 6 megabytes 6 megabytes

Target Computers:

Machine: Harris H700 Harris H60

Operating System: VOS 5.1 VOS 5.1

4.Memory Size: 6 megabytes 6 megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Configurations:

Compiler: HARRIS Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 3 September 1986

Host Computers:

Machine: Harris H700 Harris H60

Operating System: VOS 5.1 VOS 5.1

Target Computers:

Machine: Harris H700 Harris H60

Operating System: VOS 5.1 VOS 5.1

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to dif-'er. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. (See test B26005A.)

Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55AO3A through D55A03H,
D56001B, D64005E through D64005G, and D29002K.)

2-2

CONFIGURATION !NFORMATION

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AO02B, D4AO 4A, and
D4AO04B.)

• Predefined types.

This implementation does not support any additional predefined
types in the package STANDARD. (See tests B86001CR, B86001CS,
B86001CP, B86001CQ, and B86001DT.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise

NUMERIC ERROR during execution. This implementation raises
NUMERICERROR during execution. (See test E24I01A.)

• Axrray types.

When An array type is lf.clared with an index range exceeding the

INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST

components raises NUMERIC ERROR when the length of a dimension is
calculated and exceeds INTEGER'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERICERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when

checking whether the expression's subtype is compatible with the

target's subtype.

In assigning two-dimensional array types, the entire expression

does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subty, pe is compatible with

the target's subtype. (See test C52013A.)

2-3

CONFIGURATION INFORMATION

" Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggre Ate does not belong to
an i sdex subtype. (See test E43211B.)

" Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

* Representation clauses.

Enumeration representation clauses are supported. (See test

BC1002A.)

" Pragnas.

The pragma INLINE is not supported for procedures nor is it
supported for functions. (See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2401D.)

2-4

.... - -~ ~~~.1k,, .- -4i - . ' 'i j % %j%.' ,' .. ,- '." ." .'.. .

CONFIGURATION INFORMATION

Only one internal file can be associated with each external file
for sequential, direct, and text I/O. (See tests CE2107A .. D (4
tests), CE2107F, and CE3111A .. E (5 tests).)

An existing text file can be opened in OUT FILE mode, but it
cannot be created in OUTFILE mode nor in INFILE mode. (See test
EE31 O2C.)

Temporary sequential and direct files are given a name. Temporary

files given names are deleted when they are closed. (See tests
CE2108A and CE2108C.)

2

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as

potentially applicable to the validation of the HARRIS Ada Compiler,
Version 1.0. Excluded were 242 tests requiring a floating-point precision
greater than that supported by the implemen!.ation and the 16 withdrawn
tests. After they were processed, 40 tests were determined to be
inapplicable. The remaining 1981 tests were passed by 'J. compiler.

lTh AVF concludes that the testing results demonstrate acceptable
"nonformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 815 1051 17 9 21 1981

Failed 0 0 0 0 0 0 0

Inapplicable 0 9 269 0 2 2 282

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

" - ' ." .'' ' ' ' -% % % ' " % %~~'" " " " ' . - "-"" '"- -"' ' . , r
" - - '

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 _ 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 96 201 272 241 160 97 155 198 99 28 216 218 1981

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 106 122 6 1 0 6 1 6 0 0 14 282

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83A06B C48008A CA3005A Ghrough CA3005D (4 tests)
BA2001E C4AO14A CE2107E
BC3204C C92005A
C35904A C94OACA

St.; Ippe11dix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 282 tests were inapplicable for
the reasons indicated:

. C34001D, B52004E, B55BO9D, B86001CR, and C55BO7B use SHORTINTEGER
which is not supported by this compiler.

. C34001E, B52004D, B55B09C, B86001CS, and C55B07A use LONGINTEGER
which is not supported by this compiler.

. C34O01F, C35702A, and B86001CP use SHORT FLOAT which is not
supported by this compiler.

. C34001G, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

3-2

TEST INFORMATION

" C64103A requires certain predefined operations to raise
NUMERIC ERROR. However, the Harris Ada compiler follows AI-387's
recomendation that CONSTRAINT ERROR be raised instead. Analysis
of the output confirmed that CONSTRAINTERROR was raised at all
appropriate places.

" B86001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATIONS's base type. This is not the case for

this implementation.

" CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

" CA3OOIF, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

" CE2107A, CE2107B, CE2107D, CE2107F, CE2110B, CE2111D, CE2111H,

CE3111A hrough CE3111E, CE3114B, and CE3115A are inapplicable
because wultiple internal files cannot .p associated with the same

external file.

" 242 tests were not processed because SYSTEM.MAX DIGITS was nine.
These tests were:

C24113F through C24113Y (20 tests)

C35705F through C35705Y (20 tests)
C35706F through C35706Y (20 tests)
C35707F through C35707TY (20 tests)
C35708F through C35708Y (20 tests)
C35802F through C35802Y (20 tests)
C45241F through C45241Y (20 tests)

C45321F through C45321Y (20 tests)
C45421F through C45421Y (20 tests)

C45424F through C45424Y (20 tests)
C45521F through C45521Z (21 tests)
C45621F through C45621Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then

3-3

"'K-T INFORMATION

%.ompiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were. required for 19 Class B tests.

B24104A B24104B B24104C

B2AOO3A B2AOO3B B2AO03C
B33004A B37201A B38008A
B41202A B44001A B64001A
B67001A B67001B B67001C
B67001D B910ABA B95001A
B97101E

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a 5at of test results for ACVC Version 1.7 produced by
the HARRTS Ada Compiler, Version 1.0, on the H700 was submitted to Lhe AVF
by the applicant for prevalidation review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests.
!, prnvalidation materials were recet;vd for the HTrris H60.

3.7.2 Test Method

Testing of'the HARRIS Ada Compiler using ACVC Version 1.7 was conducted
on-site by a validation team. The configurations consisted of a Harris
H700 host and target computer operating under VOS 5.1 and a Harris H60 host
and target computer operating under VOS 5.1.

Three magnetic tapes containing ACVC Version 1.7 were taken on-site by the
validation team. The magnetic tapes contained all tests applicable to this
validation, as well as all tests inapplicable to this validation, except
for any Class C tests that require floating-point precision exceeding the
maximun value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tapes.

The contents of the magnetic tapes were loaded directly onto two Harris
H700 computers. After the test files were loaded to disk, the files were
grouped by test class and moved into separate directories. Support units,
REPORT and CHECK FILE, were compiled on each of the H700 computers and were

determined to be operating correctly. The full set of tests was compiled
and run in batch mode in two job queues on each H700 during validation

3-4

TEST INFORMATION

testing. Class B and C tests were run in smaller groups according to
chapter within class. Larger chapters were further divided into three and
four smaller groups of tests. Test results were printed and reviewed by
the validation team.

A subset of the ACVC 1.7 was run on the Harris H60, which is
architecturally identical to the Harris H700. The subset of 60 tests
consisted of five tests selected at random from the classes of tests within

each chapter. The 60 tests were taken on-site via a magnetic tape and
copied to cartridge tape. The contents of the cartridge tape were loaded

to the H60, and the tests were compiled, linked, and executed (as
appropriate). The test results were printed, and the validation team found
them identical to the results produced by the H700.

The compiler was tested Using command scripts provided by Harris

Corporation. These scripts were reviewed by the validation team. The
following switches were in effect for testing:

All tLs were compiled with the options:

-v (verbose)

-el (error listing)

Those which compile and link used:

-M <unit name> (main unit name)
-o <a.out> (output filename is "a.out")

For the main library units that execute only:

-o <a.out> (output filename is "a.out")

Under the operating system VOS 5.1, two settings were used for the testbed
program size. All but five tests used 512 words of memory. Five tests
required 2047 words of memory:

C4 1203B
C45526A
C52102B

C52102D

CE3604A

Test output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-5

[' ' ' '" '" '' -" '" ,''--" " " "" -' '--' "--" ''-"..- "-.''--'* -- -"--- 4':

TEST INFORMATION

.1.73 Test Site

The validation team arrived at Harris Corporation, Ft. Lauderdale FL, on 24
JUN 1986 and departed after testing was comnpleted on 28 JUN 1986.

3-

U.%

APPENDIX A

COMPLIANCE STATEMENT

Harris Corporation has submitted the following
compliance statement concerning the HARRIS Ada
Compiler.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: HARRIS Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Harris H700 Harris H60

Operating System: VOS 5.1 VOS 5.1

Target Computer:

Machine(s): Harris H700 Harris H60

Oppratihig System: VOS 5.1 VOS 5.1

Iarris Corporation has made no deliberate extensions to the Ada language
standard.

Harris Corporation agrees to the public disclosure of this report.

Harris Corporation agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

e~tv~dk ~ Date:_ ___

Harris Corporation
Wendell Norton
Director of Contracts

A-2

" " " "' m" " a..~ '... " " ,' ," %
i '% "
°

''°. ," "" o" -. " . -' : " " .- - .. o-. .'.*" -'.- . - - -. -'..-.. " - . "" ". """""" . "'", .'
•

"- . - .

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on

represcntation classes. The implementation-dependent characteristics of
the HARRIS Ada Compiler, Version 1.0, are described in the following
sections which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A). Two other
*, :ctions, package STANDARD and file naming conventions; are als, Lncluded
in this appendix.

. -ragumas

1.1 Implementation-Dependent Pragmas

PRAGMA CONTROLLED is recognized by the implementation but
has no effect in this release.

PRAGMA INLINE is recognized by the implementation but has no
effect in this release.

PRAGMA INTERFACE is recognized by the implementation and
supports calls to C and FORTRAN language functions with an
optional link name for the subprogram. The Ada
specifications can be either functions or procedures. All
parameters must have mode IN.

For C, the types of parameters and the result type for
functions must be scalar, access, or the predefined type
ADDRESS defined in the package SYSTEM. Record and array
objects may be passed by reference using the ADDRESS
attribute.

B-1

APPENDIX F OF THE Ada STANDARD

For FORTRAN, all parameters are passed by reference; the
parameter types must have the type ADDRESS defined in the
package SYSTEM. The result type for a FORTRAN function must
be a scalar type. Care should be taken when using tasking
and FORTRAN functions. Since FORTRAN is not reentrant we
suggest that an Ada controller task should be used to
access FORTRAN functions.

The optional link name enables calling a function whose name
is defined in another language, allowing characters in the
name that are not allowed in an Ada identifier. Case
sensitivity can then be preserved. Without the optional
link name, the Ada compiler converts all C interface names
to lower case and all FORTRAN interface names to upper case.
For instance, the following example generates a reference
for $Varl with no case or other changes: pragma Ih ERFACE
(language-name, Varl, "$Varl') ;

P 'G;;A MEMORY SIZE is recognized by the implementation, but
has no effect. The implementation does not allow the
package SYSTEM to be modified by means of praguas; however,
the same effect can be achieved by reeopiling SYSTEM with
altered values.

PRAGMA OPTii1ZE is recognized by the implementation but has
1% effect in this release.

PRAGMA PACK will cause the compiler to choose a non-aligned
representation for composite types. In the current release,
it will not cause objects to be packed at the bit level.

PRAGMA SHARED is recognized by the implementation but has no
effect in this release.

PRAGMA STORAGE UNIT is recognized by the implementation but
has no effect. The implementation does not allow the
package SYSTEM to be modified by means of pragmas; however,
the same effect can be achieved by recompiling SYSTEM with
altered values.

PRAGMA SUPPRESS is recognized by the implemention and
applies from the point of occurrence to the end of the
innermost enclosing block. The double parameter form of the
pragma, with a name of an object, type, or subtype is
recognized, but has no effect.
PRAGMA SYSTEM-NAME is recognized by the implementation but

has no effect. The implementation does not allow the
package SYSTEM to be modified by means of pragmas; however,
the same effect can be achieved by recompiling SYSTEM with
altered values.

B-2

APPEND) v F OF THE Ada STANDARD

1.2 Implementation-Defined Pragmas

PRAGMA SHAREBODY is used to indicate a desire to share or
not share an instantiation. The pragma may reference the
generic unit or the instantiated unit. When it references a
generic unit, it sets sharing on/off for all instantiations
of that generic, unless overridden by specific SHAREBODY
pragmas for individual instantiations. When it references
an instantiated unit, sharing is on/off only for that unit.
The default is to share all generics that can be shared,
unless the unit uses PRAGMA IN_LINE.

PRAGMA SHARE-BODY is only allowed in the following places:
immediately within a declarative part, immediately within a
package specification, or after a library unit in a
compilation, but before any subsequent compilation unit.

The form of this pragma is:
pragma SHARE-BODY (generic_name, boolean literal)

Note that a parent instantiation is independent of any
individual instantiation, therefore recompilation of a
gPen.-Z with different parameters has no effect on other
,ow ,pilations that reference it. The unit that caused
f¢n-ilation of a parent instantiation need not be referenced
u any iay by subsequent units that share the parpnt-

, .nstantiation.

Sharing generics causes a slight execution time penalty
because all type attributes must be indirectly referenced
(as if an extra calling argument were added). However, it
substantially reduces compilation time in most circumstances
and reduces program size.

2 Implementation-Dependent Attributes

There are no implementation-dependent attributes in HAPSE.

3 Specification of the package SYSTEM

package SYSTEM is

type ADDRESS is private
type NAME is (harrisvue)

SYSTEMNAME : constant NAME :- harris vue ;

B-3

% % -j . '. % . ° °' .'.'-.-.' '%' \ " %-.- -%-.. ,.- - -.-.-.- -%..'. .-. , ..- ...- -..

APPENDIX F OF THE Ada STANDARD

-- System-Dependent Constraints

STORAGEUNIT : constant :8 8
MEMORYSIZE : constant : 6_291_456 ;

-- System-Dependent Named Numbers

MININT : constant :- - 8388608 ;
MAX_INT : constant : 8388_607 ;
MAX_DIGITS : constant 9 1
MAX_MANTISSA : constant :-38;
FINE DELTA : constant : 2.0**(-30) ;
TICK : constant :- 0.01 1

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 23 ;

MAXRECSIZE : integer :- 32767 * 3 ;

private

type ADDRESS is new INTEGER;

end SYSTEM ;

4 Restrictions on Representation Clauses

4.1 Pragma PACK

Bit packing is. not supported. In the presence of pragma
PACK, components of composite types are packed to the
nearest whole STORAGEUNIT.

4.2 Length Clauses

The specification T'SIZE is not supported. The
specification T'SMALL is not supported. The specification
T'STORAGESIZE is supported.

4.3 Record Representation Clauses

Component clauses must specify alignment on multiples of 3
STORAGEUNIT boundaries.

B-4

.V.

APPENDIX F OF THE Ada STANDARD

4.4 Address Clauses

Address clauses and interrupts are not supported.

5 Other Representation Implementation-Dependencies

Change of representation is not supported for record types.

The ADDRESS attribute is not supported for the following
entities: static constants; packages; tasksy labels; and
entries.

Machine code insertions are not supported.

6 Conventions for Implementation-Generated Names

There are no implementation generated names.

7 Interpretation of Expressions in Address Clauses

Address clauses a~d interrupts are not supported.

8 Restrictions on Unchecked Conversions

The predefined generic function UNCEECKED CONVERSION cannot
be instantiated with a target type that is an unconstrained
array type or an unconstrained record type with
discriminants.

9 Implementation Characteristics of I/O Packages

9.1 Interpretation of Strings as Applied to External Files

Strings that contain names of external files are interpreted
in the following manners for each of the respective external
file environments.

B-5

*)d ~ p ~ ~ , *

APPENDIX F OF THE Ada STA'ZDARD

VUE external files: file names may be composed of up to 512
characters of the ASCII character set except for "/0,
ascii.nul, and non-printable characters. Further, Lhe first
character of a file must be alpha-numeric, ".' or . If
the 1/' character is encountered in a string, it is
interpreted as a separater between file names that specify
VUE directories.

VOS external files: file names are composed of a 1 to 8
character qualifier plus a 1 to 8 character areaname. The
first character of the areaname must be alphabetic. The
remaining cliaractwrs comprising the areaname may be drawn
from the followiiig set of characters: A-Z, 0-9, :, #, -, /,
. and " ". The qualifier portion of a file name is
optional. If specified, it must be comprised of an account
portion, a name portion, and an asterisk. The account
portion may be null, or 1-4 characters from the following
set: 0-9. The name portion may be null, or 1-4 characters
from the following set: A-Z, 0-9. The name portion may not
be null if the account portion is not null. If lower case
letters are encountered in the string they are converted to
upper case.

9.2 Interpretation oi Strings as Applied to Form Parameters

The OPEN and CREATE I/O procedures accept FORM parameters,
in order to specify implementation dependent attributes of
files. The HAPSE implementation supports the attributes
described below. These attributes may be specified in any
order. Blanks may be inserted between attributes, however
none are required. No attribute can be specified more than
once. All attributes must be specified in uppercase. These
attributes are only applicable to CREATE calls. A form
string passed to OPEN is Ignored.

File Type Attributes
BL Blocked file
UB Unblocked file
RA Random file

These attributes specify the VOS file type of a file to be
created. UB is the default for all files. In general, the
defaults should not be overrideen for direct and sequential
I/O.

q

B-6

Afi -ND.X F OF THE Ada c..ANDARD

Double Buffered Blocking
DB Defines a BL type file as permanently double

buffered

This attribute can only be specified if the file type is BL.

* Directory Type
CD The VOS directory entry for this file is to be

kept resident
DD The VOS directory entry is kept on disc

Access Parameters
PR PUBLIC READ
PW PUBLIC WRITE
PD PUBLIC DELETE
AR ACCOUNT READ
AW ACCOUNT WRITE
AD ACCOUNT DELETE
OW OWNER WRITE

* OD OWNER DELETE

These attributes determine the access permissions associated
with a file. The default acuess is OW OD. Note that If any
access attributes are specified, then only the specified
accesses will be granted (i.e. OW OD is rnt assumed).

File Definition Attributes

A-n Access level, n - 0-15, VOS access required to access file
B-n Blocking factor, where n is 1-7 sectors
C-n Current size, where n is the number of sectors requested
E-n Eliminate date, where n is the number of days before purging
G-n Granule size, where n is the number of sectors per granule
M-n Maximum size, n - number of sectors to which file may expand
P-n Pack number, n - pack number of pack on which to create file
T-n Type number, n - 0-7, provided for user file classification

No spaces are allowed between the attribute letter, the
equal sign, and the integer value.

B-7

=I , 'L . '. '. '-" .L " ."'" " . . """ " "•"•"-"-"•. . -"• •"-•--.• -. - • •-•• •- - .. .-

APPENDIX F OF ".hE Ada ST.:7.1RD

9.3 Implementation-Dependent Characteristics of DIRECTIO

Instantiations of DIRECT_1O use the value MAXRECSIZE as
the record size (expressed in STORAGEUNITs) when the size
of ELEMENT TYPE exceede that value. For example, for
unconstrained arrays such as string where ELEMENTTYPE'SIZE
is very large, MAX_RECSIZE is used instead. MAXRECSIZE
ir lefined in SYSTEM and can be changed by a program before
instantiating DIRECTIO to provide an upper limit on the
record size. In any case, the maximum size supported is
32_768 * 3 * STORAGEUNIT bits. DIRECTI0 will raise
USE-ERROR if $XRECORDSIZE exceeds this absolute limit.

9.4 Implementation-Dependent Characteristics of SEQUENTIAL_IO

InLt.antiations of SEOUTIAL-1O use the value MAX REC SIZE
*. as Zhe record size (expressed in STORAGEUNITz) when the
- size of ELEMENTTYPE exceeds that value. For example, for

inconstrained arrays such as string where ELEMENT TYPE'SIZE
Is very large, MAX RECSIZE is used instead. KAXREC SIZE
ts defined in SYSTEM and can be changed by a program before
instantiating INTEGER_1O to provide an upper limit on the
record a). In any cise the maxiu= size supperted is
32 766 i 3 *STORAGE_UNTT bits. SEOUENTIALIO will rai.e
US!_ERROR if RMAXRIC_£113 exceeds this absolute limit.

Package STANDARD oontains the following declarations:

type INTEGER is range -8_388_608 .. 8_388_607;

type FLOAT is digits 9 range
-2#0. 111111111111111111l1111111111111111111tE127 .

2#0. 11111111111111111111111111111111111111#E127;

type DURATION is delta 2#1.0#E-8 range -2l.0#E31.
2#111111111111111111111111111111. 11111111#;

DI'RATION'SMALL = 3.90625E-03 seconds

B-8

01

APPENDIX C

TEST PARAMETERS

Certain tests In the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG IDi (I..498 => 'A', 499 > '1')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID2 (1..498 => 'A', 499 => '2')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID3 (1..249 => 'A', 250 > '3',

Identifier of size MAX IN LEN 251..499 => 'A')
with varying middle character.

$BIG ID4 (1..249 > 'A', 250 => '4',
Identifier of size MAX IN LEN 251..499 => 'A')
with varying middle character.

$BIG INT LIT (I..1496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is AX IN LEN characters
long.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..-493 > '0', 494..499 => "69.OE1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$BLANKS (1..-479 => '

Blanks of length MAX INLEN - 20

$COUNT LAST 8_388_607
Value of COUNT'LAST in TEXT IO
package.

$EXTfENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz!$%?@[\]" (}-"
A string literal containing all
the ASCII characters with

printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 8_388_607
Value of FIELD'LAST in TEXTIO
package.

$FILENAME WITH BAD CHARS "./AD-CHARACTER"
An illegal external file name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR "./CE2102" & (1..254 > 'C')
An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000000.0
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNAL FILE NAME1 "./ILLEGALEXTERNALFILENAME 1"
Illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directory/ILLEGALEXTFILENAM- 2"
Illegal external file names.

C-2

TEST PARAME1E RS

Name and Meaning Value

$ INTEGER FI RST -8_388_608
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 8_388607
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THANDURATION -100_000.0

A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST. -10000000000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 9
Maximum digits supported for
floating-point type,.

$MAX IN LEN 499 (plus line feed character)
Maximum input line length
permitted by the implementation.

$NAME LONGLONGINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,

LONGFLOAT, or LONGINTEGER.

SNEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit

falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NONASCII CHAR TYPE (NON-NULL)
An en-umera7ted type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-3

*1 44 . , " - '. ,'- -- '' "i %: '' ' :"- : . ,v:,:" <-.-

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

• B4A01OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

. B83AO6B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
enueration literal in line 25.

" BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

" BC3204C: The file BC3204C4 should contain the body for BC3204C0
as indicated in line 25 of BC3204C3M.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR (instead of CONSTRAINT ERROR).

• C41404A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

C48008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

-- Lo--e- - - - - - - _ -'_ %_ _ _* Z:: L.'% L " *, .Z -: . ''. - -*-- • . - , - ,- .-- .

w::F AwN TESTS

. C4AO14A: The number declarations in lines 19-22 are incorrect

because conversions are not static.

• C92005A: At line 40, "/=" for type PACK.BIGINT is not visible
without a USE clause for package PACK.

C94oACA: This test assumes that allocated task TT will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

" CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
AccordinEg to AI-00255, such a file may be rejected as a whole.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" CE2107E: This test has a variable, TEMP HAS NAME, that needs to
be given an initial value of TRUE.

D-2

4

Dm

